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Abstract

Data sets that are subject to Statistical Disclosure Limitation (SDL) often have many variables of 

different types that need to be altered for disclosure limitation. To produce a good quality public 

data set, the data protector needs to account for the relationships between the variables. Hence, 

ideally SDL methods should not be univariate, that is, treating each variable independently of 

others, but multivariate, handling many variables at the same time. However, if a data set has many 

variables, as most government survey data do, the task of developing and implementing a 

multivariate approach for SDL becomes difficult. In this paper we propose a pre-masking data 

processing procedure which consists of clustering the variables of high dimensional data sets, so 

that different groups of variables can be masked independently, thus reducing the complexity of 

SDL. We consider different hierarchical clustering methods, including our version of hierarchical 

clustering algorithm, that we call K-Link, and outline how the data protector can define an 

appropriate number of clusters for these methods. We implemented and applied these methods to 

two genuine multivariate data sets. The results of the experiments show that K-Link has a potential 

to solve this problem efficiently. The success of the method, however, depends on the correlation 

structure of the data. For the data sets where most of the variables are correlated, clustering of 

variables and subsequent independent application of SDL methods to different clusters may lead to 

attenuated correlation in the masked data, even for efficient clustering methods. Thereby, the 

proposed approach is a trade-off between the computational complexity of multivariate SDL 

methods and data utility loss due to independent treatment of different clusters by SDL methods. 

Keywords and phrases: Statistical disclosure limitation (SDL), hierarchical clustering, 

dimensionality reduction.

1 Introduction

Data sets that are released to the public by the data collecting organizations often contain 

many variables of different types. For example, U.S. government surveys such as the 

National Health Interview Survey, the Behavioral Risk Factor Surveillance System, the 

Current Population Survey and American Community Survey are high dimensional. Data 

collecting organizations have an obligation by law to protect the privacy and confidentiality 

of responses provided by individuals or enterprises. This is usually accomplished by altering

—we use the term masking—the original data before release, for example, by aggregating 
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categorical values, swapping data values for selected records, or adding noise to numerical 

values. See [10, 11] for more details. These methods limit disclosure risk by reducing the 

information available to intruders attempting to identify individuals in the released data. 

Data can also be synthesized, however, to do so one needs to come up with a good data 

generation model which is a complex task. As the dimensionality of the data increases, 

model estimation becomes more and more difficult. In case of the big governmental surveys 

mentioned above, model estimation can become extremely difficult and time consuming. 

Finding the best strategy for joint masking of many variables at a time is not a 

straightforward task either. Whatever approach for SDL is chosen, the organizations that 

disseminate the data strive to release data products with high utility - a goal competing with 

confidentiality protection, because any data alteration done to thwart identification will 

negatively impact at least some statistical properties of the data.

On the other hand, independent masking of different variables, or univariate masking in 

other words, may lead to attenuation of correlation structure of the data, particularly for 

those variables which receive SDL with higher intensity. At the same time for independent 

variables in the original data, univariate and joint masking are essentially the same from the 

utility perspective.

In this paper we propose a pre-masking procedure of clustering the variables into groups 

with the objective of increasing the separation between the groups as much as possible. 

Separation is viewed in terms of how related the variables in different groups are and we 

want to make the variables in different groups as unrelated as possible, so that SDL can be 

applied independently to different clusters with minimal loss of data utility.

1.1 Contribution and plan of the paper

The main contribution of the paper is a pre-masking procedure of clustering variables in the 

data set that can help government agencies reduce the complexity of SDL methods. In 

Section 2 we describe our clustering approach. We propose a variant of hierarchical 

clustering method, that we call K-Link, which can serve this purpose. In Section 3 we 

present numerical experiments with genuine data sets. Our results show that K-Link 
compares favorably to other hierarchical clustering methods. Concluding remarks are given 

in Section 4.

2 Clustering of variables for disclosure limitation

2.1 Measures of proximity

In order to design any clustering procedure, first it is necessary to define measures of 

proximity of the objects being clustered. In case of clustering variables these are the 

measures of similarity/dissimilarity between the variables which are often based on some 

form of correlation ([18],[5],[2]). different types of variables require different metrics. For 

quantitative variables some function of the correlation coefficients is used while for 

categorical variables many association measures exists, such as χ2, Jaccard, Rand and 

others. When there are both types of variables in the data, a metric that can be computed for 

both types of variables is necessary. Similar to [2] we will use squared canonical correlation 
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as such a metric. It can be computed as a first eigenvalue of the product X′YY′X for two 

data matrices Xn×d1 and Yn×d2 for which min(n, d1, d2) = d1. As shown in [2] this metric is 

equivalent to a squared Pearson correlation for two quantitative variables. In the case of one 

quantitative X and one categorical variable Y, it is a correlation ratio which takes values in 

the interval from 0 to 1 and is defined as follows:

η2 =
∑c ∈ Caty xc − x 2

∑i = 1
n xi − x 2 (2.1)

where Caty is the set of categories of Y, nc is the number of observations in category c, xc is 

the mean value of X computed on the observations belonging to category c, x is the mean of 

X, n - total number of observations.

For the case of two categorical variables squared canonical correlation does not correspond 

to any well known association measure, but nevertheless, it can be interpreted geometrically 

according to [2]: the closer to one it is, the closer are the two linear subspaces spanned by 

the matrices representing these categorical variables, which means that the two qualitative 

variables bring similar information.

Hence, the dissimilarity matrix of variables is created as a lower triangular matrix DM with 

elements DM[i, j] = 1 − r[i, j] where r[i, j] is a squared canonical correlation between 

variables xi and xj.

2.2 Clustering methods

Once the dissimilarity matrix is established a clustering method that fits our goals can be 

chosen. In [2] a hierarchical clustering method suited for clustering variables based on 

homogeneity criteria is proposed. In the sequel we will refer to this method as Homclust. 
Homogeneity of a cluster is calculated as the sum of squared canonical correlations between 

each variable of the cluster and the central synthetic variable of that cluster. Such a synthetic 

variable of the cluster is defined as a quantitative variable “most linked” to other variables in 

the cluster and computed as the first principal component of the variables in the cluster. The 

goal of this method is to produce the most homogeneous clusters, so that the variables within 

the cluster are strongly related to each other. However, in our case when the purpose of 

clustering the variables is to find groups of variables to which SDL can be applied 

independently with minimal loss of correlation in the masked data, the objective will be 

different: the variables in different groups should be as uncorrelated as possible, so that 

independent masking of different groups of variables would not lead to significant 

correlation loss comparative to joint masking of all the variables at the same time. On the 

other hand, from a utility prospective it is not problematic if some, but not all, variables in 

the same group have little association. Indeed, if the multivariate SDL method preserves 

correlation structure, application of such method to the cluster of variables in the original 

data will produce masked cluster with similar associations, strong or week. Thereby, our 

goal is not necessarily to produce homogenous clusters, that is, clusters with highly 

correlated variables, but to maximize the separation between the clusters. Because the 

method described in [2] is focused on the homogeneity and not the separation, the clusters in 
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the resulting partition may not be very far apart, so the variables assigned to different 

clusters may still be highly correlated. This will be demonstrated in Section 3. Hence, the 

methods based on the dissimilarities between the variables in different clusters may better 

suite our goals then the methods based on the proximities within the clusters such as 

Homclust or k-means. We will call such methods tentatively “separation clustering 

methods”.

One type of such methods is divisive or “top down” hierarchical clustering. This approach 

starts with all the objects in one cluster and at each subsequent step, the largest available 

cluster is split into two clusters until finally all clusters comprise of single objects. One of 

the well known divisive methods is Diana(DIvisive ANAlysis) [12] implemented in R [3] as 

well as in other packages. Diana starts from finding a data point that has the highest average 

dissimilarity to all other objects. This object initiates a new cluster, that is called a splinter 

group. Then remaining objects are assigned either to the splinter group or to the 

complementary group based on average distance to the objects in these groups. Splitting 

clusters continues until all the objects end up in different clusters.

Contrary to divisive clustering, the agglomerative hierarchical approach starts with every 

object being a separate cluster and at each iteration the closest clusters are merged together 

building clustering hierarchy until all the objects end up in the same cluster. Some simple 

examples of such methods are Single-Link, Complete-Link, Average(see [6] and references 

therein). These algorithms differ in the way how they define distance between clusters. For 

example, for Single-Link it’s a distance between the two closest objects in the respective 

clusters. Distances between the clusters increase from iteration to iteration, so for Single-
Link the separation is guaranteed to increase as one goes up the dendrogram which is a tree 

diagram illustrating the arrangement of the clusters produced by hierarchical clustering. For 

Complete-Link method the distance between clusters is defined as the distance between the 

two farthest points in the respective clusters. In some sense Complete-Link method is 

complementary to the Single-Link method. For Average method it is measured as an average 

of pairwise distances of all points between two clusters.

The difference in definition of distances between the clusters may have significant effect on 

the form, size and, especially on the separation between the clusters, as it can be seen in 

Figure 1 of the Appendix. In particular, Single-Link may be the best choice if the goal is to 

achieve good separation between the clusters. Indeed, in the case of Single-Link two clusters 

S and L for which the gap between the closest points i ∈ L and j ∈ S is the smallest are 

joined at each iteration. Thus, unlike Complete-Link or Average, Single-Link will not create 

a partition where the gap between the borders of the clusters is smaller than the gap between 

the points of the same cluster (see Figure 1 in Appendix).

However, the shortest distance between points i ∈ L and j ∈ S may not always be a good 

measure of a gap between two clusters. Points i and j can be relatively close to each other 

but far away from the rest of the points in their respective clusters, so with the exception of 

these two points the gap between L and S may be larger than it is assessed by Single-Link. 

To mitigate this issue we propose a simple modification of Single-Link: we measure the 

distance between clusters L and S as an average of k shortest distances between points in L 

Oganian et al. Page 4

Priv Stat Databases. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and S. We call such a distance k-distance. This approach is in some way ‘midway’ between 

Single-Link and Average clustering method. The Average takes the average of pairwise 

distances of all the points between two clusters which may be big simply because two 

clusters are spread out, while the actual gap between the clusters may be small. Therefore, 

Single-Link may be ‘too little’ while the Average may be ‘too much’ since we want to focus 

on the gap between two clusters, so it makes sense to concentrate on the few points that are 

close to the boundary. We call this intermediate approach K-Link.

2.3 Number of clusters in a partition

Once the hierarchy of clusters is built we need to cut the dendrogram at some height to 

obtain an actual partition. In our clustering application, cutting height and the number of 

clusters may be determined based on the data protector preferences for the maximal utility 

loss due to independent masking of clusters. Indeed, the vertical axis of the dendrogram is a 

measure of closeness between the clusters. In other words, cutting the dendrogram at a 

particular height h sets up a lower bound on the distance between pairs of clusters in the 

partition which, in turn, corresponds to the upper bound on the allowed correlation between 

different clusters. Correlation between the variables in different clusters may be attenuated 

or lost after the SDL method is applied independently to different clusters. Thus, the data 

protector can set up an upper bound on maximal loss of correlation by choosing the 

acceptable value of h. The exact interpretation of h may differ for different clustering 

methods as it is based on the definition of a distance between the clusters. For example, for 

the Single-Link method this is a maximal correlation between two variables in different 

clusters. For K-Link method, h is an average of a few largest correlations that can be 

observed between the variables in different clusters, and so on. However, for all of the 

methods it is essentially a summary of the observed correlation between the variables in 

different clusters.

It should be noted that for K-Link, cutting the dendrogram at a particular height may in 

some rare cases lead to several solutions, that is, several clustering partitions with different 

number of clusters. This might happen because the sequence of k-distances is not strictly 

monotone as in Single-Link, although, there is a clear overall increasing trend. In particular, 

the k-distance may slightly decrease from one iteration to another which results in merging 

of next closest clusters slightly lower in the dendrogram tree.

We would also like to note, that one of the reasons why in this paper we haven’t considered 

such algorithms as k-means, k-medoids or some model-based clustering algorithms, such as 

[7], is due to the fact that all these methods require the number of clusters as an input 

parameter. To successfully apply these algorithms, one often needs to compare many 

clustering partitions corresponding to different numbers of clusters. Another reason, is that 

many of these algorithms, by design specifically target the homogeneity of clusters. For 

example, k-means minimizes the sum of squares within the cluster on each iteration, and, 

thus, may create a partition with poor separation between the clusters. We believe, that the 

approach outlined above for the hierarchical agglomerative clustering methods allows for a 

more straightforward way of determining the number of clusters. It is important to mention 
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that this approach produces clusters of variables that are a suitable input for the subsequent 

use of SDL methods.

3 Numerical experiments

3.1 Data sets

We applied our approach for clustering the variables to two real multivariate data sets. One 

of them is the National Health Interview Survey 2015 fourth quarter sample adult 

component public file [16]. In the sequel we will refer to it as NHIS. This is a public use file 

that has already undergone disclosure limitation. It has 6213 records. For our experiments 

we selected 86 variables. Their summary description is given in the Appendix. When the 

correlations were computed for NHIS data, sampling weights and design structure were 

taken into account. Package R Survey was used for that.

Our second data set was downloaded from the UCI Machine Learning Repository [4]. This 

is a sample drawn from the Public Use Microdata Samples (PUMS) person 1990 US Census 

file. We will refer to this file as Census in the paper. It has 68 categorical variables and about 

2.5 million records. Full description of the variables can be found in [1].

We applied Diana, Single-Link, Average, Complete-Link, Homclust as well as our K-Link 
method to these data sets.

3.2 Clustering criterion

In order to assess and compare the quality of partitions obtained by different methods we 

need to choose appropriate clustering criterion. Because clustering of variables is the first 

step and application of SDL to clustered data is the second step, ideally the clustering 

criterion should be in concordance with the SDL procedure which has to produce masked 

data with good utility. In this regard, we want to note that the clustering procedure and 

subsequent independent application of SDL methods to different clusters will not have any 

effect on univariate statistics of the masked data. These statistics will depend only on the 

properties of SDL method applied to the variables. Furthermore, clustering does not affect 

any relationships between the variables that belong to the same cluster. The only influence 

clustering may have is on the relationships between the variables that belong to different 

clusters. For example, clustering may have an effect on correlations between the variables 

that belong to different clusters. The worst case scenario or the worst output corresponds to 

the case when all the correlations between the variables that belong to different clusters are 

lost in the masked data because of the independent application of SDL methods to these 

clusters. That is why we base the assessment criterion on the separation between the 

clusters, which measures correlation between the variables in different clusters -the 

correlation which can be lost in the worst case scenario. The smaller the correlation between 

the variables in different clusters - the better the output from the utility prospective.

Many clustering criteria were proposed in the literature, some examples are [15, 8, 14, 13]. 

Many of them, however, are focused on the compactness of the clusters. However, as we 

mentioned above, compactness of the clusters is not an important quality for masking or 

synthesis of the variables in the clusters, however, separation between the clusters is. Several 
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separation indexes were proposed in the literature. For example, [9] mentions an index that 

is computed as the ratio of the shortest distance between two clusters S and L (computed as 

the shortest distance between two points i ∈ S and j ∈ L) and the maximal cluster diameter 

in the partition. A similar metric was proposed in [17], in particular, the gap between two 

clusters is divided by the total spread of both clusters. However, the spread of a cluster or it’s 

diameter is a measure of cluster compactness. It was incorporated in the aforementioned 

separation indexes in order to give preference to the partitions with compact and well 

separated clusters, which makes sense if the ultimate goal of clustering is to detect the “true” 

cluster structure of the data. However, when diameters of clusters increase, such separation 

indexes become smaller indicating that the quality of the partition becomes worse. But for 

the purpose of masking clustered data such a partition is not worse than a partition with 

compact clusters if the gap between the clusters is the same. Therefore, we will include only 

the separation component into our clustering criterion, but not the spread. Thus, the 

separation criterion that we will use to compare different methods is as follows: first, 

separation between any two clusters S, L is computed as an average of the smallest s 
distances/dissimilarities d(i, j) between the elements i ∈ L and j ∈ S. Next, minimum of 

separations between all pairs of clusters in a partition is found.

The elements, located in different clusters at shortest distances from each other essentially 

represent the borders of these two clusters and s can be thought as a parameter of 

“thickness” of the border. In general, s is data dependent and can be set to different values, 

for example, s can be equal approximately to the 5th percentile of the number of distances 

between the elements in different clusters i ∈ S and j ∈ L. One of the topics of our future 

research is to investigate further the best ways of defining s. For simplicity, in our 

experiments we set s to be equal to 5 for all the pairs of clusters with 5 or more pairwise 

distances between the elements in different clusters. For the most populated pairs of clusters, 

5 is approximately a 5th percentile of distances for our data sets. For the pairs of small 

clusters, for which there are less than 5 distances between the variables in different clusters, 

we consider all the distances. Further in the text when we refer to the distance between two 

clusters, we mean average of the s shortest distances between the variables in different 

clusters.

3.3 Results

Table 1 shows the results of the comparison of Diana, Single-Link, Average, Complete-Link, 

Homclust and K-Link methods which were applied to NHIS data. For K-Link method we 

experimented with different values of the parameter k. The best results in terms of separation 

were obtained for k = 3 and we present these results in Table 1.

The minimal distance between any two clusters in the partition for each of the methods does 

not give a full picture of the partition. We get a more realistic impression of the composition 

of the partition by considering several closest distances between pairs of clusters, not just the 

shortest one. In Table 1 we listed distances between 10 closest pairs of clusters for 3-Link, 

Single-Link, Complete-Link, Average, Homclust and K-Link. Column 3-Link-10 denotes 3-
Link method where the size of the cluster was enforced not to exceed a predefined limit, in 

this case, 10 variables per cluster. This method will be discussed later in the paper.
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For all the methods we partitioned the data into 25 clusters which corresponds to cutting the 

dendrograms approximately at height 0.8, so that the maximum correlation loss between two 

clusters does not exceed 0.2.

Results for the Census data are shown in Table 2. Parameters were set the same as for the 

NHIS data. Both tables show similar patterns in terms of relative closeness between the 

clusters for different methods.

As it can be seen from Tables 1 and 2, 3-Link has the largest separation for all ten closest 

pairs of clusters. It is followed by Single-Link and then by Average. Consistently worse are 

Diana and Complete-Link. The worst separation among the methods that have no limits on 

the cluster size is observed for Homclust which agrees with our assumption that the 

algorithms based on clusters’ homogeneity, which groups the most correlated variables in 

the same clusters, may not be appropriate for those cases when the objective is to create 

maximal separation, or minimal correlation, between the variables in different clusters.

Moreover, it is worth noting that we were not able to apply Homclust to the Census data set, 

which has 2.5 million records. The implementation of Homclust provided in package 

“ClustOfVar” [2] by its authors was not able to handle data set of this size. Thus, poor 

scalability is an additional issue of the Homclust method.

The entries in Tables 1 and 2 are the averages over the shortest s distances between two 

clusters. We also compared the actual correlations between the variables in different clusters. 

We observed that some of the variables which were placed in different clusters by Complete-
Link, Homclust and Diana were very close in terms of correlation. For example, for the 

NHIS data set, the shortest distance between the variables in the two closest clusters is 0.81 

for K-Link, 0.78 for Single-Link, 0.70 for Average, however, they are about 0.1 for 

Complete-Link and Homclust and 2.33E − 16 for Diana. The same was true for the next 

closest pair of clusters as well, that is, the the actual distances between the variables were 

considerably smaller for Diana, Complete-Link and Homclust comparative to K-Link and 

Single-Link. A similar pattern was observed for the Census data.

Regarding partitions obtained by the applications of the clustering methods mentioned 

above, we observed that Single-Link and K-Link may lead to a partition where one of the 

clusters contains many (or a majority) of the variables and a number of small clusters with 

one or two variables, while for methods that lead to more compact and homogenous clusters 

such as Complete-Link, Average, Diana and Homclust, the largest cluster has less variables 

and overall partition is slightly more balanced. For example, when we partitioned the NHIS 

data into 25 clusters, the largest cluster contains 9 variables for Diana, 11 for Average and 11 

variables for Complete-Link. However, for Single-Link and 3-Link the largest clusters 

contain 50 and 58 variables respectively. In the case of Census data the largest cluster 

contains 14 variables for Diana, 28 variables for Complete-Link, Average, but 38 variables 

for K-Link and 35 for Single-Link.

Since the main reason of clustering the variables here is to reduce the complexity of joint 

masking or joint synthesis, clustering partitions with one or few very big clusters may not 

serve the main purpose very well. That is why we implemented a modification of K-Link 
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method that incorporates an upper bound on the cluster size: as soon as the cluster size 

reaches n variables, the cluster cannot “accept” any new members. We will refer to this 

modification as k-Link-n further in the text. Another possibility to solve a “big cluster” 

problem is to split the biggest cluster in two or three smaller ones. There is, however, no 

guarantee that the obtained partition would not result in one big and another small cluster 

again. Moreover, incorporation of the restriction n during the merging process, as opposed to 

cutting the biggest cluster after clustering hierarchy is complete, may lead to better results 

because the variables that cannot join the cluster any longer that reached the maximum 

number of variables, can still join any other cluster which is closest to it. This will occur in 

the earlier stages of clusters formation, that is, as soon as the limit n was reached for the big 

cluster. Partitioning the biggest cluster in two or three after the dendrogram was finished, 

would limit the possibilities of grouping the variables only with those that are part of this 

cluster while all other clusters remain unchanged, which may not be the best solution.

For NHIS data K-Link with the limit of n = 10 variables per cluster still compares 

reasonably well with other methods that do not have restrictions. It is the second method 

after Single-Link. Recall, however, that Single-Link creates a cluster of 50 variables, while 

3-Link-10 has only 10. Performance of 3-Link-10 is very similar now to Average, for which 

the largest cluster in the partition has 10 variables as well.

For the Census data, enforcing the limit on cluster size had a larger effect on the separation 

between the clusters than for NHIS data. In fact, in the Census data there is a big group of 

correlated variables. Thus, Single-Link, Average, Complete-Link form a big cluster in their 

corresponding partitions. The size of the largest cluster varies from 28 to 38 variables among 

these methods. Thus, by enforcing the limits on the cluster size for K-Link we inevitably 

reduced the separation between the clusters in the obtained partition. Columns 3-Link-15, 3-
Link-25 and 3-Link-28 of Table 2 show the separation for 3-Link with limits n = 15, 25 and 

28. It can be seen that separation is not very good especially for the lower values of n.

It is important to observe that, it is not possible to enforce n till the top of the dendrogram. 

Our implementation of k-Link-n reports the minimal number of clusters when n can still be 

enforced. After that, to complete the hierarchy, clustering process continues as in the original 

version without restriction until the dendrogram is complete.

We conclude that clustering of variables can help reduce the complexity of SDL methods. 

However, there is a trade-off between complexity reduction and data utility, which depends 

on the correlation structure of the original data.

Finally, we want to note that the grouping of variables produced by clustering makes 

scientific sense. For example, for NHIS data, a group of food availability questions were 

placed in the same cluster, a group of questions about health care availability were together, 

exercising questions about exercising patterns were in the same cluster, and so on. Similar 

pattern was observed for Census data.
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4 Concluding remarks and future work

In this paper we propose a pre-masking clustering procedure that can be used by data 

publishing organizations that release data sets with many attributes of different types, such 

as big government surveys. Joint masking of data sets with many variables may be 

complicated and computationally involved. To reduce the complexity of the problem we 

outline a procedure of grouping variables into clusters in such a way that data utility loss due 

to independent application of SDL methods to these groups is limited. An upper bound on 

utility loss can be set up by the data protector. The value of this bound determines the 

parameters of the clustering procedure. Furthermore, we present a hierarchical clustering 

method, that we call K-Link, that can be suitable for the purpose of subsequent independent 

application of SDL to these clusters of variables. In our experiments K-Link compares 

favorably with a number of existing hierarchical agglomerative and divisive clustering 

methods. In our future research we plan to consider a wider range of clustering methods that 

may be used for this purpose.

It is worth mentioning that we focus on the correlation-based utility loss due to clustering. In 

the future research we plan to expand the study of utility loss by considering other types of 

associations between the variables in the masked data.

In this paper we do not specify, neither do we focus on any particular SDL method as we 

believe that in general our clustering approach for variables should help to reduce 

complexity of any multivariate SDL method which preserves correlation structure of the 

data. As we mentioned earlier in the paper, it may be particularly beneficial for synthetic 

methods. Clustering of variables can also be helpful for developing multivariate analogs of 

some commonly used univariate SDL procedures, for example top-coding. Extreme values 

of some continuous variables are often top coded. For example, weight, height or income 

can be top-coded. However, if the upper bound of top-coded variable is determined 

independently from other variables, protection may be inadequate for different groups of 

individuals. For example, assume that the data protector sets the upper bound for weight to 

be equal to 300 pounds for all the respondents. However, a female respondent with such a 

top-coded weight whose race/ethnicity is Asian is more extreme as opposed to respondent 

with the same weight who is male Caucasian. A multivariate approach to top-coding could 

be considered. While grouping race/ethnicity, gender, weight, height together may seem 

intuitive, there may be other, much less obvious combinations of variables especially in big 

survey data sets with hundreds of variables. Clustering of variables may be helpful for 

finding such groups.
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Appendix

Part A: different partitions obtained by Single-Link, Average, Complete-Link 

and Diana

Figure 1 illustrates how differences in definition of distance between the clusters for Single-
Link, Average, Complete-Link and Diana may influence the form and separation between 

the clusters. For this data set Single-Link was able to capture the structure of the data and 

created the most separated clusters. Separation between the clusters for partitions obtained 

by Complete-Link, Average and Diana is poor. These methods cut the vertical cluster in two 

or three parts very close to each other. On the other hand, a distant group of four point to the 

right of vertical cluster is merged with it.
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Fig. 1. 
Partitions for Single-Link, Complete-Link, Average and Diana for an artificial data set of 

points with coordinates (x, y). Red, blue and green colors indicate cluster memberships for 

the points.

Part B: Summary description of NHIS variables

The NHIS data set contains 86 variables. The variables are the respondents’ answers to the 

questions in the following categories: health conditions, mental and emotional health, health 

behavior, affordability and accessibility of health care services, health insurance coverage, 

food availability and accessibility, employment status, income and education. The group of 

health related variables include presence or absence of asthma, diabetes, bronchitis, other 

pulmonary diseases and high blood pressure. Health behavior group of variables are the 

answers to the questions about cigarette smoking, alcohol use, leisure-time physical activity 

and exercising. Mental and emotional health variables are the answers about feeling 

hopeless, nervous, restless and fidgety, and also feeling worthless and sad. NHIS file also 

includes height, weight, body mass index of the respondents as well as demographic 

variables, such as race, age, marital status and region.

Most of the categorical variables are binary (Yes or No answers).There are also few 

continuous variables in the file, for example, age, weight, height and BMI. For details see 

[16].
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Table 1.

NHIS data set: Minimal separation between the clusters for 3-Link, 3-Link-10, Single-Link, Complete-Link, 

Average, Homclust and Diana. Min1, Min2 ⋯ Min10 are the distances between the ten closest pairs of clusters.

3-Link 3-link-10 Single-Link Complete-Link Average Homclust Diana

Min1 0.8190 0.7501 0.7901 0.5734 0.7501 0.5717 0.6923

Min2 0.8245 0.7583 0.7955 0.6321 0.7583 0.6128 0.7411

Min3 0.8282 0.7701 0.8196 0.7501 0.7701 0.6764 0.7600

Min4 0.8302 0.7802 0.8243 0.7599 0.7792 0.7432 0.7681

Min5 0.8351 0.7900 0.8261 0.7701 0.7891 0.7523 0.7809

Min6 0.8431 0.7925 0.8267 0.7735 0.7925 0.7606 0.7834

Min7 0.8525 0.8001 0.8299 0.7810 0.8001 0.7783 0.7845

Min8 0.8590 0.8019 0.8307 0.7880 0.8019 0.7801 0.7881

Min9 0.8635 0.8038 0.8341 0.7903 0.8025 0.7834 0.7916

Min10 0.8691 0.8200 0.8408 0.7999 0.8154 0.7999 0.8032
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Table 2.

Census data set: Minimal separation between the clusters for 3-Link, 3-Link-15, 3-Link-25, 3-Link-28, Single-
Link, Complete-Link, Average, Homclust and Diana. Min1, Min2 ⋯ Min10 are the distances between the ten 

closest pairs of clusters.

3-Link 3-Link15 3-Link-25 3-Link-28 Single-Link Complete-Link Average Diana

m1 0.5587 0.0228 0.1463 0.1883 0.2443 0.1967 0.1883 0.0000

m2 0.5914 0.0716 0.1883 0.2503 0.2503 0.2503 0.2503 0.1883

m3 0.5982 0.1883 0.4110 0.2790 0.2790 0.2790 0.2790 0.2790

m4 0.6250 0.3892 0.5914 0.4110 0.3314 0.4110 0.4110 0.3825

m5 0.6331 0.4110 0.6250 0.5210 0.4400 0.5148 0.5210 0.4731

m6 0.6351 0.5210 0.6392 0.5971 0.5587 0.5725 0.5971 0.5085

m7 0.6443 0.6405 0.6443 0.6392 0.5657 0.5971 0.6392 0.5631

m8 0.6627 0.7034 0.7034 0.6405 0.5971 0.6104 0.6405 0.5710

m9 0.6853 0.7050 0.7067 0.6740 0.6019 0.6378 0.6740 0.5971

m10 0.7034 0.7067 0.7080 0.7067 0.6351 0.6578 0.7067 0.6579
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